/** * Multi-way trees (aka rose trees) and forests, where a forest is * * ```ts * type Forest<A> = Array<Tree<A>> * ``` * * @since 2.0.0 */ import { Applicative1 } from './Applicative' import { Apply1 } from './Apply' import { Chain1 } from './Chain' import { Comonad1 } from './Comonad' import { Eq } from './Eq' import { Foldable1 } from './Foldable' import { Functor1 } from './Functor' import { HKT, Kind, Kind2, Kind3, Kind4, URIS, URIS2, URIS3, URIS4 } from './HKT' import { Monad as MonadHKT, Monad1, Monad2, Monad2C, Monad3, Monad3C, Monad4 } from './Monad' import { Monoid } from './Monoid' import { Pointed1 } from './Pointed' import { Predicate } from './Predicate' import { Show } from './Show' import { PipeableTraverse1, Traversable1 } from './Traversable' /** * @category model * @since 2.0.0 */ export declare type Forest<A> = Array<Tree<A>> /** * @category model * @since 2.0.0 */ export interface Tree<A> { readonly value: A readonly forest: Forest<A> } /** * @category constructors * @since 2.0.0 */ export declare function make<A>(value: A, forest?: Forest<A>): Tree<A> /** * @category instances * @since 2.0.0 */ export declare function getShow<A>(S: Show<A>): Show<Tree<A>> /** * @category instances * @since 2.0.0 */ export declare function getEq<A>(E: Eq<A>): Eq<Tree<A>> /** * Neat 2-dimensional drawing of a forest * * @since 2.0.0 */ export declare function drawForest(forest: Forest<string>): string /** * Neat 2-dimensional drawing of a tree * * @example * import { make, drawTree } from 'fp-ts/Tree' * * const fa = make('a', [ * make('b'), * make('c'), * make('d', [make('e'), make('f')]) * ]) * * assert.strictEqual(drawTree(fa), `a * ├─ b * ├─ c * └─ d * ├─ e * └─ f`) * * * @since 2.0.0 */ export declare function drawTree(tree: Tree<string>): string /** * Build a (possibly infinite) tree from a seed value in breadth-first order. * * @category constructors * @since 2.0.0 */ export declare function unfoldTree<A, B>(b: B, f: (b: B) => [A, Array<B>]): Tree<A> /** * Build a (possibly infinite) forest from a list of seed values in breadth-first order. * * @category constructors * @since 2.0.0 */ export declare function unfoldForest<A, B>(bs: Array<B>, f: (b: B) => [A, Array<B>]): Forest<A> /** * Monadic tree builder, in depth-first order * * @category constructors * @since 2.0.0 */ export declare function unfoldTreeM<M extends URIS4>( M: Monad4<M> ): <S, R, E, A, B>(b: B, f: (b: B) => Kind4<M, S, R, E, [A, Array<B>]>) => Kind4<M, S, R, E, Tree<A>> export declare function unfoldTreeM<M extends URIS3>( M: Monad3<M> ): <R, E, A, B>(b: B, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Tree<A>> export declare function unfoldTreeM<M extends URIS3, E>( M: Monad3C<M, E> ): <R, A, B>(b: B, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Tree<A>> export declare function unfoldTreeM<M extends URIS2>( M: Monad2<M> ): <E, A, B>(b: B, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Tree<A>> export declare function unfoldTreeM<M extends URIS2, E>( M: Monad2C<M, E> ): <A, B>(b: B, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Tree<A>> export declare function unfoldTreeM<M extends URIS>( M: Monad1<M> ): <A, B>(b: B, f: (b: B) => Kind<M, [A, Array<B>]>) => Kind<M, Tree<A>> export declare function unfoldTreeM<M>( M: MonadHKT<M> ): <A, B>(b: B, f: (b: B) => HKT<M, [A, Array<B>]>) => HKT<M, Tree<A>> /** * Monadic forest builder, in depth-first order * * @category constructors * @since 2.0.0 */ export declare function unfoldForestM<M extends URIS4>( M: Monad4<M> ): <S, R, E, A, B>(bs: Array<B>, f: (b: B) => Kind4<M, S, R, E, [A, Array<B>]>) => Kind4<M, S, R, E, Forest<A>> export declare function unfoldForestM<M extends URIS3>( M: Monad3<M> ): <R, E, A, B>(bs: Array<B>, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Forest<A>> export declare function unfoldForestM<M extends URIS3, E>( M: Monad3C<M, E> ): <R, A, B>(bs: Array<B>, f: (b: B) => Kind3<M, R, E, [A, Array<B>]>) => Kind3<M, R, E, Forest<A>> export declare function unfoldForestM<M extends URIS2>( M: Monad2<M> ): <R, E, B>(bs: Array<B>, f: (b: B) => Kind2<M, R, [E, Array<B>]>) => Kind2<M, R, Forest<E>> export declare function unfoldForestM<M extends URIS2, E>( M: Monad2C<M, E> ): <A, B>(bs: Array<B>, f: (b: B) => Kind2<M, E, [A, Array<B>]>) => Kind2<M, E, Forest<A>> export declare function unfoldForestM<M extends URIS>( M: Monad1<M> ): <A, B>(bs: Array<B>, f: (b: B) => Kind<M, [A, Array<B>]>) => Kind<M, Forest<A>> export declare function unfoldForestM<M>( M: MonadHKT<M> ): <A, B>(bs: Array<B>, f: (b: B) => HKT<M, [A, Array<B>]>) => HKT<M, Forest<A>> /** * Fold a tree into a "summary" value in depth-first order. * * For each node in the tree, apply `f` to the `value` and the result of applying `f` to each `forest`. * * This is also known as the catamorphism on trees. * * @example * import { fold, make } from 'fp-ts/Tree' * import { concatAll } from 'fp-ts/Monoid' * import { MonoidSum } from 'fp-ts/number' * * const t = make(1, [make(2), make(3)]) * * const sum = concatAll(MonoidSum) * * // Sum the values in a tree: * assert.deepStrictEqual(fold((a: number, bs: Array<number>) => a + sum(bs))(t), 6) * * // Find the maximum value in the tree: * assert.deepStrictEqual(fold((a: number, bs: Array<number>) => bs.reduce((b, acc) => Math.max(b, acc), a))(t), 3) * * // Count the number of leaves in the tree: * assert.deepStrictEqual(fold((_: number, bs: Array<number>) => (bs.length === 0 ? 1 : sum(bs)))(t), 2) * * @category folding * @since 2.6.0 */ export declare function fold<A, B>(f: (a: A, bs: Array<B>) => B): (tree: Tree<A>) => B /** * @since 2.0.0 */ export declare const ap: <A>(fa: Tree<A>) => <B>(fab: Tree<(a: A) => B>) => Tree<B> /** * Composes computations in sequence, using the return value of one computation to determine the next computation. * * @category Monad * @since 2.0.0 */ export declare const chain: <A, B>(f: (a: A) => Tree<B>) => (ma: Tree<A>) => Tree<B> /** * @since 2.0.0 */ export declare const extend: <A, B>(f: (wa: Tree<A>) => B) => (wa: Tree<A>) => Tree<B> /** * @since 2.0.0 */ export declare const duplicate: <A>(wa: Tree<A>) => Tree<Tree<A>> /** * @category sequencing * @since 2.0.0 */ export declare const flatten: <A>(mma: Tree<Tree<A>>) => Tree<A> /** * `map` can be used to turn functions `(a: A) => B` into functions `(fa: F<A>) => F<B>` whose argument and return types * use the type constructor `F` to represent some computational context. * * @category mapping * @since 2.0.0 */ export declare const map: <A, B>(f: (a: A) => B) => (fa: Tree<A>) => Tree<B> /** * @category folding * @since 2.0.0 */ export declare const reduce: <A, B>(b: B, f: (b: B, a: A) => B) => (fa: Tree<A>) => B /** * @category folding * @since 2.0.0 */ export declare const foldMap: <M>(M: Monoid<M>) => <A>(f: (a: A) => M) => (fa: Tree<A>) => M /** * @category folding * @since 2.0.0 */ export declare const reduceRight: <A, B>(b: B, f: (a: A, b: B) => B) => (fa: Tree<A>) => B /** * @category Extract * @since 2.6.2 */ export declare const extract: <A>(wa: Tree<A>) => A /** * @category traversing * @since 2.6.3 */ export declare const traverse: PipeableTraverse1<URI> /** * @category traversing * @since 2.6.3 */ export declare const sequence: Traversable1<URI>['sequence'] /** * @category constructors * @since 2.7.0 */ export declare const of: <A>(a: A) => Tree<A> /** * @category type lambdas * @since 2.0.0 */ export declare const URI = 'Tree' /** * @category type lambdas * @since 2.0.0 */ export declare type URI = typeof URI declare module './HKT' { interface URItoKind<A> { readonly [URI]: Tree<A> } } /** * @category instances * @since 2.7.0 */ export declare const Functor: Functor1<URI> /** * @category mapping * @since 2.10.0 */ export declare const flap: <A>(a: A) => <B>(fab: Tree<(a: A) => B>) => Tree<B> /** * @category instances * @since 2.10.0 */ export declare const Pointed: Pointed1<URI> /** * @category instances * @since 2.10.0 */ export declare const Apply: Apply1<URI> /** * Combine two effectful actions, keeping only the result of the first. * * @since 2.0.0 */ export declare const apFirst: <B>(second: Tree<B>) => <A>(first: Tree<A>) => Tree<A> /** * Combine two effectful actions, keeping only the result of the second. * * @since 2.0.0 */ export declare const apSecond: <B>(second: Tree<B>) => <A>(first: Tree<A>) => Tree<B> /** * @category instances * @since 2.7.0 */ export declare const Applicative: Applicative1<URI> /** * @category instances * @since 2.10.0 */ export declare const Chain: Chain1<URI> /** * @category instances * @since 2.7.0 */ export declare const Monad: Monad1<URI> /** * Composes computations in sequence, using the return value of one computation to determine the next computation and * keeping only the result of the first. * * @since 2.0.0 */ export declare const chainFirst: <A, B>(f: (a: A) => Tree<B>) => (first: Tree<A>) => Tree<A> /** * @category instances * @since 2.7.0 */ export declare const Foldable: Foldable1<URI> /** * @category instances * @since 2.7.0 */ export declare const Traversable: Traversable1<URI> /** * @category instances * @since 2.7.0 */ export declare const Comonad: Comonad1<URI> /** * @category do notation * @since 2.9.0 */ export declare const Do: Tree<{}> /** * @category do notation * @since 2.8.0 */ export declare const bindTo: <N extends string>(name: N) => <A>(fa: Tree<A>) => Tree<{ readonly [K in N]: A }> declare const let_: <N extends string, A, B>( name: Exclude<N, keyof A>, f: (a: A) => B ) => (fa: Tree<A>) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> export { /** * @category do notation * @since 2.13.0 */ let_ as let } /** * @category do notation * @since 2.8.0 */ export declare const bind: <N extends string, A, B>( name: Exclude<N, keyof A>, f: (a: A) => Tree<B> ) => (ma: Tree<A>) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> /** * @category do notation * @since 2.8.0 */ export declare const apS: <N extends string, A, B>( name: Exclude<N, keyof A>, fb: Tree<B> ) => (fa: Tree<A>) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> /** * @since 2.0.0 */ export declare function elem<A>(E: Eq<A>): (a: A, fa: Tree<A>) => boolean /** * @since 2.11.0 */ export declare const exists: <A>(predicate: Predicate<A>) => (ma: Tree<A>) => boolean /** * This instance is deprecated, use small, specific instances instead. * For example if a function needs a `Functor` instance, pass `T.Functor` instead of `T.tree` * (where `T` is from `import T from 'fp-ts/Tree'`) * * @category zone of death * @since 2.0.0 * @deprecated */ export declare const tree: Monad1<URI> & Foldable1<URI> & Traversable1<URI> & Comonad1<URI>