/** * The `Applicative` type class extends the `Apply` type class with a `of` function, which can be used to create values * of type `f a` from values of type `a`. * * Where `Apply` provides the ability to lift functions of two or more arguments to functions whose arguments are * wrapped using `f`, and `Functor` provides the ability to lift functions of one argument, `pure` can be seen as the * function which lifts functions of _zero_ arguments. That is, `Applicative` functors support a lifting operation for * any number of function arguments. * * Instances must satisfy the following laws in addition to the `Apply` laws: * * 1. Identity: `A.ap(A.of(a => a), fa) <-> fa` * 2. Homomorphism: `A.ap(A.of(ab), A.of(a)) <-> A.of(ab(a))` * 3. Interchange: `A.ap(fab, A.of(a)) <-> A.ap(A.of(ab => ab(a)), fab)` * * Note. `Functor`'s `map` can be derived: `A.map(x, f) = A.ap(A.of(f), x)` * * @since 2.0.0 */ import { ap, getApplySemigroup } from './Apply'; import { pipe } from './function'; import { getFunctorComposition } from './Functor'; export function getApplicativeMonoid(F) { var f = getApplySemigroup(F); return function (M) { return ({ concat: f(M).concat, empty: F.of(M.empty) }); }; } /** @deprecated */ export function getApplicativeComposition(F, G) { var map = getFunctorComposition(F, G).map; var _ap = ap(F, G); return { map: map, of: function (a) { return F.of(G.of(a)); }, ap: function (fgab, fga) { return pipe(fgab, _ap(fga)); } }; }