/** * Multi-way trees (aka rose trees) and forests, where a forest is * * ```ts * type Forest = Array> * ``` * * @since 2.0.0 */ import { Applicative1 } from './Applicative' import { Apply1 } from './Apply' import { Chain1 } from './Chain' import { Comonad1 } from './Comonad' import { Eq } from './Eq' import { Foldable1 } from './Foldable' import { Functor1 } from './Functor' import { HKT, Kind, Kind2, Kind3, Kind4, URIS, URIS2, URIS3, URIS4 } from './HKT' import { Monad as MonadHKT, Monad1, Monad2, Monad2C, Monad3, Monad3C, Monad4 } from './Monad' import { Monoid } from './Monoid' import { Pointed1 } from './Pointed' import { Predicate } from './Predicate' import { Show } from './Show' import { PipeableTraverse1, Traversable1 } from './Traversable' /** * @category model * @since 2.0.0 */ export declare type Forest = Array> /** * @category model * @since 2.0.0 */ export interface Tree { readonly value: A readonly forest: Forest } /** * @category constructors * @since 2.0.0 */ export declare function make(value: A, forest?: Forest): Tree /** * @category instances * @since 2.0.0 */ export declare function getShow(S: Show): Show> /** * @category instances * @since 2.0.0 */ export declare function getEq(E: Eq): Eq> /** * Neat 2-dimensional drawing of a forest * * @since 2.0.0 */ export declare function drawForest(forest: Forest): string /** * Neat 2-dimensional drawing of a tree * * @example * import { make, drawTree } from 'fp-ts/Tree' * * const fa = make('a', [ * make('b'), * make('c'), * make('d', [make('e'), make('f')]) * ]) * * assert.strictEqual(drawTree(fa), `a * ├─ b * ├─ c * └─ d * ├─ e * └─ f`) * * * @since 2.0.0 */ export declare function drawTree(tree: Tree): string /** * Build a (possibly infinite) tree from a seed value in breadth-first order. * * @category constructors * @since 2.0.0 */ export declare function unfoldTree(b: B, f: (b: B) => [A, Array]): Tree /** * Build a (possibly infinite) forest from a list of seed values in breadth-first order. * * @category constructors * @since 2.0.0 */ export declare function unfoldForest(bs: Array, f: (b: B) => [A, Array]): Forest /** * Monadic tree builder, in depth-first order * * @category constructors * @since 2.0.0 */ export declare function unfoldTreeM( M: Monad4 ): (b: B, f: (b: B) => Kind4]>) => Kind4> export declare function unfoldTreeM( M: Monad3 ): (b: B, f: (b: B) => Kind3]>) => Kind3> export declare function unfoldTreeM( M: Monad3C ): (b: B, f: (b: B) => Kind3]>) => Kind3> export declare function unfoldTreeM( M: Monad2 ): (b: B, f: (b: B) => Kind2]>) => Kind2> export declare function unfoldTreeM( M: Monad2C ): (b: B, f: (b: B) => Kind2]>) => Kind2> export declare function unfoldTreeM( M: Monad1 ): (b: B, f: (b: B) => Kind]>) => Kind> export declare function unfoldTreeM( M: MonadHKT ): (b: B, f: (b: B) => HKT]>) => HKT> /** * Monadic forest builder, in depth-first order * * @category constructors * @since 2.0.0 */ export declare function unfoldForestM( M: Monad4 ): (bs: Array, f: (b: B) => Kind4]>) => Kind4> export declare function unfoldForestM( M: Monad3 ): (bs: Array, f: (b: B) => Kind3]>) => Kind3> export declare function unfoldForestM( M: Monad3C ): (bs: Array, f: (b: B) => Kind3]>) => Kind3> export declare function unfoldForestM( M: Monad2 ): (bs: Array, f: (b: B) => Kind2]>) => Kind2> export declare function unfoldForestM( M: Monad2C ): (bs: Array, f: (b: B) => Kind2]>) => Kind2> export declare function unfoldForestM( M: Monad1 ): (bs: Array, f: (b: B) => Kind]>) => Kind> export declare function unfoldForestM( M: MonadHKT ): (bs: Array, f: (b: B) => HKT]>) => HKT> /** * Fold a tree into a "summary" value in depth-first order. * * For each node in the tree, apply `f` to the `value` and the result of applying `f` to each `forest`. * * This is also known as the catamorphism on trees. * * @example * import { fold, make } from 'fp-ts/Tree' * import { concatAll } from 'fp-ts/Monoid' * import { MonoidSum } from 'fp-ts/number' * * const t = make(1, [make(2), make(3)]) * * const sum = concatAll(MonoidSum) * * // Sum the values in a tree: * assert.deepStrictEqual(fold((a: number, bs: Array) => a + sum(bs))(t), 6) * * // Find the maximum value in the tree: * assert.deepStrictEqual(fold((a: number, bs: Array) => bs.reduce((b, acc) => Math.max(b, acc), a))(t), 3) * * // Count the number of leaves in the tree: * assert.deepStrictEqual(fold((_: number, bs: Array) => (bs.length === 0 ? 1 : sum(bs)))(t), 2) * * @category folding * @since 2.6.0 */ export declare function fold(f: (a: A, bs: Array) => B): (tree: Tree) => B /** * @since 2.0.0 */ export declare const ap: (fa: Tree) => (fab: Tree<(a: A) => B>) => Tree /** * Composes computations in sequence, using the return value of one computation to determine the next computation. * * @category Monad * @since 2.0.0 */ export declare const chain: (f: (a: A) => Tree) => (ma: Tree) => Tree /** * @since 2.0.0 */ export declare const extend: (f: (wa: Tree) => B) => (wa: Tree) => Tree /** * @since 2.0.0 */ export declare const duplicate: (wa: Tree) => Tree> /** * @category sequencing * @since 2.0.0 */ export declare const flatten: (mma: Tree>) => Tree /** * `map` can be used to turn functions `(a: A) => B` into functions `(fa: F) => F` whose argument and return types * use the type constructor `F` to represent some computational context. * * @category mapping * @since 2.0.0 */ export declare const map: (f: (a: A) => B) => (fa: Tree) => Tree /** * @category folding * @since 2.0.0 */ export declare const reduce: (b: B, f: (b: B, a: A) => B) => (fa: Tree) => B /** * @category folding * @since 2.0.0 */ export declare const foldMap: (M: Monoid) => (f: (a: A) => M) => (fa: Tree) => M /** * @category folding * @since 2.0.0 */ export declare const reduceRight: (b: B, f: (a: A, b: B) => B) => (fa: Tree) => B /** * @category Extract * @since 2.6.2 */ export declare const extract: (wa: Tree) => A /** * @category traversing * @since 2.6.3 */ export declare const traverse: PipeableTraverse1 /** * @category traversing * @since 2.6.3 */ export declare const sequence: Traversable1['sequence'] /** * @category constructors * @since 2.7.0 */ export declare const of: (a: A) => Tree /** * @category type lambdas * @since 2.0.0 */ export declare const URI = 'Tree' /** * @category type lambdas * @since 2.0.0 */ export declare type URI = typeof URI declare module './HKT' { interface URItoKind { readonly [URI]: Tree } } /** * @category instances * @since 2.7.0 */ export declare const Functor: Functor1 /** * @category mapping * @since 2.10.0 */ export declare const flap: (a: A) => (fab: Tree<(a: A) => B>) => Tree /** * @category instances * @since 2.10.0 */ export declare const Pointed: Pointed1 /** * @category instances * @since 2.10.0 */ export declare const Apply: Apply1 /** * Combine two effectful actions, keeping only the result of the first. * * @since 2.0.0 */ export declare const apFirst: (second: Tree) => (first: Tree) => Tree /** * Combine two effectful actions, keeping only the result of the second. * * @since 2.0.0 */ export declare const apSecond: (second: Tree) => (first: Tree) => Tree /** * @category instances * @since 2.7.0 */ export declare const Applicative: Applicative1 /** * @category instances * @since 2.10.0 */ export declare const Chain: Chain1 /** * @category instances * @since 2.7.0 */ export declare const Monad: Monad1 /** * Composes computations in sequence, using the return value of one computation to determine the next computation and * keeping only the result of the first. * * @since 2.0.0 */ export declare const chainFirst: (f: (a: A) => Tree) => (first: Tree) => Tree /** * @category instances * @since 2.7.0 */ export declare const Foldable: Foldable1 /** * @category instances * @since 2.7.0 */ export declare const Traversable: Traversable1 /** * @category instances * @since 2.7.0 */ export declare const Comonad: Comonad1 /** * @category do notation * @since 2.9.0 */ export declare const Do: Tree<{}> /** * @category do notation * @since 2.8.0 */ export declare const bindTo: (name: N) => (fa: Tree) => Tree<{ readonly [K in N]: A }> declare const let_: ( name: Exclude, f: (a: A) => B ) => (fa: Tree) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> export { /** * @category do notation * @since 2.13.0 */ let_ as let } /** * @category do notation * @since 2.8.0 */ export declare const bind: ( name: Exclude, f: (a: A) => Tree ) => (ma: Tree) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> /** * @category do notation * @since 2.8.0 */ export declare const apS: ( name: Exclude, fb: Tree ) => (fa: Tree) => Tree<{ readonly [K in N | keyof A]: K extends keyof A ? A[K] : B }> /** * @since 2.0.0 */ export declare function elem(E: Eq): (a: A, fa: Tree) => boolean /** * @since 2.11.0 */ export declare const exists: (predicate: Predicate) => (ma: Tree) => boolean /** * This instance is deprecated, use small, specific instances instead. * For example if a function needs a `Functor` instance, pass `T.Functor` instead of `T.tree` * (where `T` is from `import T from 'fp-ts/Tree'`) * * @category zone of death * @since 2.0.0 * @deprecated */ export declare const tree: Monad1 & Foldable1 & Traversable1 & Comonad1