40 lines
1.5 KiB
JavaScript
40 lines
1.5 KiB
JavaScript
/**
|
|
* The `Applicative` type class extends the `Apply` type class with a `of` function, which can be used to create values
|
|
* of type `f a` from values of type `a`.
|
|
*
|
|
* Where `Apply` provides the ability to lift functions of two or more arguments to functions whose arguments are
|
|
* wrapped using `f`, and `Functor` provides the ability to lift functions of one argument, `pure` can be seen as the
|
|
* function which lifts functions of _zero_ arguments. That is, `Applicative` functors support a lifting operation for
|
|
* any number of function arguments.
|
|
*
|
|
* Instances must satisfy the following laws in addition to the `Apply` laws:
|
|
*
|
|
* 1. Identity: `A.ap(A.of(a => a), fa) <-> fa`
|
|
* 2. Homomorphism: `A.ap(A.of(ab), A.of(a)) <-> A.of(ab(a))`
|
|
* 3. Interchange: `A.ap(fab, A.of(a)) <-> A.ap(A.of(ab => ab(a)), fab)`
|
|
*
|
|
* Note. `Functor`'s `map` can be derived: `A.map(x, f) = A.ap(A.of(f), x)`
|
|
*
|
|
* @since 2.0.0
|
|
*/
|
|
import { ap, getApplySemigroup } from './Apply';
|
|
import { pipe } from './function';
|
|
import { getFunctorComposition } from './Functor';
|
|
export function getApplicativeMonoid(F) {
|
|
var f = getApplySemigroup(F);
|
|
return function (M) { return ({
|
|
concat: f(M).concat,
|
|
empty: F.of(M.empty)
|
|
}); };
|
|
}
|
|
/** @deprecated */
|
|
export function getApplicativeComposition(F, G) {
|
|
var map = getFunctorComposition(F, G).map;
|
|
var _ap = ap(F, G);
|
|
return {
|
|
map: map,
|
|
of: function (a) { return F.of(G.of(a)); },
|
|
ap: function (fgab, fga) { return pipe(fgab, _ap(fga)); }
|
|
};
|
|
}
|