Innovenergy_trunk/firmware/opt/innovenergy/controller/controller.py

645 lines
18 KiB
Python
Executable File

#!/usr/bin/python -u
# coding=utf-8
import logging
import os
import time
import states as State
import target_type as TargetType
from random import randint
from python_libs.ie_dbus.dbus_service import DBusService
from python_libs.ie_utils.main_loop import run_on_main_loop
# noinspection PyUnreachableCode
if False:
from typing import NoReturn, Optional, Any, Iterable, List
logging.basicConfig(level=logging.INFO)
_log = logging.getLogger(__name__)
VERSION = '1.0.0'
PRODUCT = 'Controller'
GRID_SERVICE_PREFIX = 'com.victronenergy.grid.'
BATTERY_SERVICE_PREFIX = 'com.victronenergy.battery.'
INVERTER_SERVICE_PREFIX = 'com.victronenergy.vebus.'
SYSTEM_SERVICE_PREFIX = 'com.victronenergy.system'
HUB4_SERVICE_PREFIX = 'com.victronenergy.hub4'
SETTINGS_SERVICE_PREFIX = 'com.victronenergy.settings'
UPDATE_PERIOD_MS = 2000
MAX_POWER_PER_BATTERY = 2500
MAX_DAYS_WITHOUT_EOC = 7
SECONDS_PER_DAY = 24 * 60 * 60
GRID_SET_POINT_SETTING = PRODUCT + '/GridSetPoint'
LAST_EOC_SETTING = PRODUCT + '/LastEOC'
CALIBRATION_CHARGE_START_TIME_OF_DAY_SETTING = PRODUCT + '/CalibrationChargeStartTime'
HEAT_LOSS = 150 # W
P_CONST = 0.5 # W/W
Epoch = int
Seconds = int
def time_now():
return int(time.time())
class Controller(object):
def __init__(self, measurement, target, target_type, state):
# type: (float, float, int, int) -> NoReturn
self.target_type = target_type
self.target = target
self.measurement = measurement
self.state = state
d_p = target - measurement
self.delta = d_p * P_CONST
@staticmethod
def min(controllers):
# type: (Iterable[Controller]) -> Controller
return min(controllers, key=lambda c: c.delta)
@staticmethod
def max(controllers):
# type: (Iterable[Controller]) -> Controller
return max(controllers, key=lambda c: c.delta)
def clamp(self, lower_limit_controllers, upper_limit_controllers):
# type: (List[Controller],List[Controller]) -> Controller
c_min = Controller.min(upper_limit_controllers + [self])
return Controller.max(lower_limit_controllers + [c_min])
# noinspection PyMethodMayBeStatic
class InnovEnergyController(DBusService):
def __init__(self):
super(InnovEnergyController, self).__init__(PRODUCT.lower())
self.settings.add_setting(path=LAST_EOC_SETTING, default_value=0) # unix epoch timestamp
self.settings.add_setting(path=GRID_SET_POINT_SETTING, default_value=0) # grid setpoint, Watts
self.settings.add_setting(path=CALIBRATION_CHARGE_START_TIME_OF_DAY_SETTING, default_value=32400) # 09:00
self.own_properties.set('/ProductName', PRODUCT)
self.own_properties.set('/Mgmt/ProcessName', __file__)
self.own_properties.set('/Mgmt/ProcessVersion', VERSION)
self.own_properties.set('/Mgmt/Connection', 'dbus')
self.own_properties.set('/ProductId', PRODUCT)
self.own_properties.set('/FirmwareVersion', VERSION)
self.own_properties.set('/HardwareVersion', VERSION)
self.own_properties.set('/Connected', 1)
self.own_properties.set('/TimeToCalibrationCharge', 'unknown')
self.own_properties.set('/State', 0)
self.phases = [
p for p in ['/Hub4/L1/AcPowerSetpoint', '/Hub4/L2/AcPowerSetpoint', '/Hub4/L3/AcPowerSetpoint']
if self.remote_properties.exists(self.inverter_service + p)
]
self.n_phases = len(self.phases)
print ('The system has ' + str(self.n_phases) + ' phase' + ('s' if self.n_phases != 1 else ''))
self.max_inverter_power = 32700
# ^ defined in https://github.com/victronenergy/dbus_modbustcp/blob/master/CCGX-Modbus-TCP-register-list.xlsx
def clamp_power_command(self, value):
# type: (float) -> int
value = max(value, -self.max_inverter_power)
value = min(value, self.max_inverter_power)
return int(value)
def get_service(self, prefix):
# type: (str) -> Optional[unicode]
service = next((s for s in self.available_services if s.startswith(prefix)), None)
if service is None:
raise Exception('no service matching ' + prefix + '* available')
return service
def is_service_available(self, prefix):
# type: (str) -> bool
return next((True for s in self.available_services if s.startswith(prefix)), False)
@property
def battery_service(self):
# type: () -> Optional[unicode]
return self.get_service(BATTERY_SERVICE_PREFIX)
@property
def battery_available(self):
# type: () -> bool
return self.is_service_available(BATTERY_SERVICE_PREFIX)
@property
def grid_service(self):
# type: () -> Optional[unicode]
return self.get_service(GRID_SERVICE_PREFIX)
@property
def grid_meter_available(self):
# type: () -> bool
return self.is_service_available(GRID_SERVICE_PREFIX)
@property
def inverter_service(self):
# type: () -> Optional[unicode]
return self.get_service(INVERTER_SERVICE_PREFIX)
@property
def inverter_available(self):
# type: () -> bool
return self.is_service_available(INVERTER_SERVICE_PREFIX)
@property
def system_service(self):
# type: () -> Optional[unicode]
return self.get_service(SYSTEM_SERVICE_PREFIX)
@property
def system_service_available(self):
# type: () -> bool
return self.is_service_available(SYSTEM_SERVICE_PREFIX)
@property
def hub4_service(self):
# type: () -> Optional[unicode]
return self.get_service(HUB4_SERVICE_PREFIX)
@property
def hub4_service_available(self):
# type: () -> bool
return self.is_service_available(HUB4_SERVICE_PREFIX)
@property
def inverter_power_setpoint(self):
# type: () -> float
return sum((self.get_inverter_prop(p) for p in self.phases))
def get_battery_prop(self, dbus_path):
# type: (str) -> Any
battery_service = self.battery_service
return self.remote_properties.get(battery_service + dbus_path).value
def get_grid_prop(self, dbus_path):
# type: (str) -> Any
return self.remote_properties.get(self.grid_service + dbus_path).value
def get_inverter_prop(self, dbus_path):
# type: (str) -> Any
return self.remote_properties.get(self.inverter_service + dbus_path).value
def get_system_prop(self, dbus_path):
# type: (str) -> Any
system_service = self.system_service
return self.remote_properties.get(system_service + dbus_path).value
def get_hub4_prop(self, dbus_path):
# type: (str) -> Any
hub4_service = self.hub4_service
return self.remote_properties.get(hub4_service + dbus_path).value
def set_settings_prop(self, dbus_path, value):
# type: (str, Any) -> bool
return self.remote_properties.set(SETTINGS_SERVICE_PREFIX + dbus_path, value)
def set_inverter_prop(self, dbus_path, value):
# type: (str, Any) -> bool
inverter_service = self.inverter_service
return self.remote_properties.set(inverter_service + dbus_path, value)
@property
def max_battery_charge_power(self):
# type: () -> int
return self.get_battery_prop('/Info/MaxChargePower')
@property
def max_battery_discharge_power(self):
# type: () -> int
return self.get_battery_prop('/Info/MaxDischargePower')
@property
def max_configured_charge_power(self):
# type: () -> Optional[int]
max_power = self.settings.get('/Settings/CGwacs/MaxChargePower')
return max_power if max_power >= 0 else None
@property
def max_configured_discharge_power(self): # unsigned
# type: () -> Optional[int]
max_power = self.settings.get('/Settings/CGwacs/MaxDischargePower')
return max_power if max_power >= 0 else None
@property
def max_charge_power(self):
# type: () -> int
if self.max_configured_charge_power is None:
return self.max_battery_charge_power
else:
return min(self.max_battery_charge_power, self.max_configured_charge_power)
@property
def max_discharge_power(self): # unsigned
# type: () -> int
if self.max_configured_discharge_power is None:
return self.max_battery_discharge_power
else:
return min(self.max_battery_discharge_power, self.max_configured_discharge_power)
def set_inverter_power_setpoint(self, power):
# type: (float) -> NoReturn
if self.settings.get('/Settings/CGwacs/BatteryLife/State') == 9:
self.settings.set('/Settings/CGwacs/BatteryLife/State', 0) # enables scheduled charge
self.settings.set('/Settings/CGwacs/Hub4Mode', 3) # disable hub4
self.set_inverter_prop('/Hub4/DisableCharge', 0)
self.set_inverter_prop('/Hub4/DisableFeedIn', 0)
power = self.clamp_power_command(power / self.n_phases)
for p in self.phases:
self.set_inverter_prop(p, power + randint(-1, 1)) # use randint to force dbus re-send
def set_controller_state(self, state):
# type: (int) -> NoReturn
self.own_properties.set('/State', state)
@property
def grid_power(self):
# type: () -> Optional[float]
try:
return self.get_grid_prop('/Ac/Power')
except:
return None
@property
def battery_cold(self):
# type: () -> bool
return self.get_battery_prop('/IoStatus/BatteryCold') == 1
@property
def eoc_reached(self):
# type: () -> bool
if not self.battery_available:
return False
return self.get_battery_prop('/IoStatus/EocReached') == 1
@property
def battery_power(self):
# type: () -> float
return self.get_battery_prop('/Dc/0/Power')
@property
def inverter_ac_in_power(self):
# type: () -> float
return self.get_inverter_prop('/Ac/ActiveIn/P')
@property
def inverter_ac_out_power(self):
# type: () -> float
return self.get_inverter_prop('/Ac/Out/P')
@property
def soc(self):
# type: () -> float
return self.get_battery_prop('/Soc')
@property
def n_batteries(self):
# type: () -> int
return self.get_battery_prop('/NbOfBatteries')
@property
def min_soc(self):
# type: () -> float
return self.settings.get('/Settings/CGwacs/BatteryLife/MinimumSocLimit')
@property
def should_hold_min_soc(self):
# type: () -> bool
return self.min_soc <= self.soc <= self.min_soc + 5
@property
def utc_offset(self):
# type: () -> int
# stackoverflow.com/a/1301528
# stackoverflow.com/a/3168394
os.environ['TZ'] = self.settings.get('/Settings/System/TimeZone')
time.tzset()
is_dst = time.daylight and time.localtime().tm_isdst > 0
return -(time.altzone if is_dst else time.timezone)
@property
def grid_set_point(self):
# type: () -> float
return self.settings.get('/Settings/CGwacs/AcPowerSetPoint')
@property
def time_to_calibration_charge_str(self):
# type: () -> str
return self.own_properties.get('/TimeToCalibrationCharge').text
@property
def calibration_charge_deadline(self):
# type: () -> Epoch
utc_offset = self.utc_offset
ultimate_deadline = self.settings.get(LAST_EOC_SETTING) + MAX_DAYS_WITHOUT_EOC * SECONDS_PER_DAY
midnight_before_udl = int((ultimate_deadline + utc_offset) / SECONDS_PER_DAY) * SECONDS_PER_DAY - utc_offset # round off to last midnight
dead_line = midnight_before_udl + self.calibration_charge_start_time_of_day
while dead_line > ultimate_deadline: # should fire at most once, but let's be defensive...
dead_line -= SECONDS_PER_DAY # too late, advance one day
return dead_line
@property
def time_to_calibration_charge(self):
# type: () -> Seconds
return self.calibration_charge_deadline - time_now()
@property
def grid_blackout(self):
# type: () -> bool
return self.get_inverter_prop('/Leds/Mains') < 1
@property
def scheduled_charge(self):
# type: () -> bool
return self.get_hub4_prop('/Overrides/ForceCharge') != 0
@property
def calibration_charge_start_time_of_day(self):
# type: () -> Seconds
return self.settings.get(CALIBRATION_CHARGE_START_TIME_OF_DAY_SETTING) # seconds since midnight
@property
def must_do_calibration_charge(self):
# type: () -> bool
return self.time_to_calibration_charge <= 0
def controller_charge_to_min_soc(self):
# type: () -> Controller
return Controller(
measurement=self.battery_power,
target=self.max_charge_power,
target_type=TargetType.BATTERY_DC,
state=State.CHARGE_TO_MIN_SOC
)
def controller_hold_min_soc(self):
# type: () -> Controller
# TODO: explain
a = -4 * HEAT_LOSS * self.n_batteries
b = -a * (self.min_soc + .5)
target_dc_power = a * self.soc + b
return Controller(
measurement = self.battery_power,
target = target_dc_power,
target_type = TargetType.BATTERY_DC,
state = State.HOLD_MIN_SOC
)
def controller_calibration_charge(self):
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = self.max_charge_power,
target_type = TargetType.BATTERY_DC,
state = State.CALIBRATION_CHARGE
)
def controller_limit_discharge_power(self): # signed
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = -self.max_discharge_power, # add sign!
target_type = TargetType.BATTERY_DC,
state = State.LIMIT_DISCHARGE_POWER
)
def controller_limit_charge_power(self):
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = self.max_charge_power,
target_type = TargetType.BATTERY_DC,
state = State.LIMIT_CHARGE_POWER
)
def controller_optimize_self_consumption(self):
# type: () -> Controller
return Controller(
measurement = self.grid_power,
target = self.grid_set_point,
target_type = TargetType.GRID_AC,
state = State.OPTIMIZE_SELF_CONSUMPTION
)
def controller_heating(self):
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = self.max_charge_power,
target_type = TargetType.BATTERY_DC,
state = State.HEATING
)
def controller_scheduled_charge(self):
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = self.max_charge_power,
target_type = TargetType.BATTERY_DC,
state = State.SCHEDULED_CHARGE
)
def controller_no_grid_meter(self):
# type: () -> Controller
return Controller(
measurement = self.battery_power,
target = self.max_charge_power,
target_type = TargetType.BATTERY_DC,
state = State.NO_GRID_METER_AVAILABLE
)
def controller_no_battery(self):
# type: () -> Controller
return Controller(
measurement = self.inverter_ac_in_power,
target = 0,
target_type = TargetType.INVERTER_AC_IN,
state = State.NO_BATTERY_AVAILABLE
)
def controller_bridge_grid_blackout(self):
# type: () -> Controller
return Controller(
measurement = 0,
target = 0,
target_type = TargetType.GRID_AC,
state = State.BRIDGE_GRID_BLACKOUT
)
def update_eoc(self):
if self.eoc_reached:
print('battery has reached EOC')
self.settings.set(LAST_EOC_SETTING, time_now())
self.publish_time_to_calibration_charge()
def publish_time_to_calibration_charge(self):
total_seconds = self.time_to_calibration_charge
if total_seconds <= 0:
time_to_eoc_str = 'now'
else:
total_minutes, seconds = divmod(total_seconds, 60)
total_hours, minutes = divmod(total_minutes, 60)
total_days, hours = divmod(total_hours, 24)
days_str = (str(total_days) + 'd') if total_days > 0 else ''
hours_str = (str(hours) + 'h') if total_hours > 0 else ''
minutes_str = (str(minutes) + 'm') if total_days == 0 else ''
time_to_eoc_str = "{0} {1} {2}".format(days_str, hours_str, minutes_str).strip()
self.own_properties.set('/TimeToCalibrationCharge', time_to_eoc_str)
def print_system_stats(self, controller):
# type: (Controller) -> NoReturn
def soc_setpoint():
if controller.state == State.CALIBRATION_CHARGE or controller.state == State.NO_GRID_METER_AVAILABLE:
return ' => 100%'
if controller.state == State.CHARGE_TO_MIN_SOC:
return ' => ' + str(int(self.min_soc)) + '%'
return ''
def setpoint(target_type):
if target_type != controller.target_type:
return ''
return ' => ' + str(int(controller.target)) + 'W'
def p(power):
# type: (Optional[float]) -> str
if power is None:
return ' --- W'
else:
return str(int(power)) + 'W'
ac_loads = None if self.grid_power is None else self.grid_power - self.inverter_ac_in_power
delta = p(controller.delta) if controller.delta < 0 else '+' + p(controller.delta)
battery_power = self.battery_power if self.battery_available else None
soc_ = str(self.soc) + '%' if self.battery_available else '---'
print (State.name_of[controller.state])
print ('')
print ('time to CC: ' + self.time_to_calibration_charge_str)
print (' SOC: ' + soc_ + soc_setpoint())
print (' grid: ' + p(self.grid_power) + setpoint(TargetType.GRID_AC))
print (' battery: ' + p(battery_power) + setpoint(TargetType.BATTERY_DC))
print (' AC in: ' + p(self.inverter_ac_in_power) + ' ' + delta)
print (' AC out: ' + p(self.inverter_ac_out_power))
print (' AC loads: ' + p(ac_loads))
def choose_controller(self):
# type: () -> Controller
if self.grid_blackout:
return self.controller_bridge_grid_blackout()
if not self.battery_available:
return self.controller_no_battery()
if self.battery_cold:
return self.controller_heating()
if self.scheduled_charge:
return self.controller_scheduled_charge()
if self.must_do_calibration_charge:
return self.controller_calibration_charge()
if self.soc < self.min_soc:
return self.controller_charge_to_min_soc()
if not self.grid_meter_available:
return self.controller_no_grid_meter()
hold_min_soc = self.controller_hold_min_soc()
limit_discharge_power = self.controller_limit_discharge_power() # signed
lower_limit = [limit_discharge_power, hold_min_soc]
# No upper limit. We no longer actively limit charge power. DC/DC Charger inside the BMS will do that for us.
upper_limit = []
optimize_self_consumption = self.controller_optimize_self_consumption()
return optimize_self_consumption.clamp(lower_limit, upper_limit)
def update(self):
print('iteration started\n')
self.update_eoc()
if self.inverter_available:
controller = self.choose_controller()
power = self.inverter_power_setpoint + controller.delta
self.set_inverter_power_setpoint(power)
self.set_controller_state(controller.state)
self.print_system_stats(controller) # for debug
else:
self.set_controller_state(State.NO_INVERTER_AVAILABLE)
print('inverter not available!')
print('\niteration finished\n')
def main():
print('starting ' + __file__)
with InnovEnergyController() as service:
run_on_main_loop(service.update, UPDATE_PERIOD_MS)
print(__file__ + ' has shut down')
if __name__ == '__main__':
main()